Lee-Yang zeros and the Ising model on the Sierpinski gasket
نویسندگان
چکیده
منابع مشابه
Lee-Yang zeros and the Ising model on the Sierpinski Gasket
We study the distribution of the complex temperature zeros for the partition function of the Ising model on a Sierpinski gasket using an exact recursive relation. Although the zeros arrange on a curve pinching the real axis at T = 0 in the thermodynamic limit, their density vanishes asymptotically along the curve approaching the origin. This phenomenon explains the coincidence of the low temper...
متن کاملYang–Lee zeros of the Yang–Lee model
To understand the distribution of the Yang–Lee zeros in quantum integrable field theories we analyse the simplest of these systems given by the 2D Yang– Lee model. The grand-canonical partition function of this quantum field theory, as a function of the fugacity z and the inverse temperature β, can be computed in terms of the thermodynamics Bethe Ansatz based on its exact S-matrix. We extract t...
متن کاملDensity of Yang-Lee zeros for the Ising ferromagnet.
The densities of Yang-Lee zeros for the Ising ferromagnet on the L x L square lattice are evaluated from the exact grand partition functions (L=3 approximately 16). The properties of the density of Yang-Lee zeros are discussed as a function of temperature T and system size L. The three different classes of phase transitions for the Ising ferromagnet--first-order phase transition, second-order p...
متن کاملSome new results on Yang-Lee zeros of the Ising model partition function
We prove that for the Ising model on a lattice of dimensionality d 2 2, the zeros of the partition function 2 in the complex p plane (where ,u = e -2PH) lie on the unit circle j,~l = 1 for a wider range of K,,/ = /3J,,,*t than the range K,,,,, 3 0 assumed in the premise of the Yang-Lee circle theorem. This range includes complex temperatures, and we show that it is lattice-dependent. Our result...
متن کاملSandpile model on the Sierpinski gasket fractal.
We investigate the sandpile model on the two-dimensional Sierpinski gasket fractal. We find that the model displays interesting critical behavior, and we analyze the distribution functions of avalanche sizes, lifetimes, and topplings and calculate the associated critical exponents t51.5160.04, a51.6360.04, and m51.3660.04. The avalanche size distribution shows power-law behavior modulated by lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1999
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/32/27/303